Krylov Methods for Low-Rank Regularization
نویسندگان
چکیده
منابع مشابه
Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...
متن کاملLow Rank Priors for Color Image Regularization
In this work we consider the regularization of vectorial data such as color images. Based on the observation that edge alignment across image channels is a desirable prior for multichannel image restoration, we propose a novel scheme of minimizing the rank of the image Jacobian and extend this idea to second derivatives in the framework of total generalized variation. We compare the proposed co...
متن کاملTikhonov regularization based on generalized Krylov subspace methods
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...
متن کاملConvolutional neural networks with low-rank regularization
Large CNNs have delivered impressive performance in various computer vision applications. But the storage and computation requirements make it problematic for deploying these models on mobile devices. Recently, tensor decompositions have been used for speeding up CNNs. In this paper, we further develop the tensor decomposition technique. We propose a new algorithm for computing the low-rank ten...
متن کاملBootstrap-Based Regularization for Low-Rank Matrix Estimation
We develop a flexible framework for low-rank matrix estimation that allows us to transform noise models into regularization schemes via a simple bootstrap algorithm. Effectively, our procedure seeks an autoencoding basis for the observed matrix that is stable with respect to the specified noise model; we call the resulting procedure a stable autoencoder. In the simplest case, with an isotropic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2020
ISSN: 0895-4798,1095-7162
DOI: 10.1137/19m1302727